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ABSTRACT We propose a general procedure for solv-
ing incomplete data estimation problems. The procedure
can be used to find the maximum likelihood estimate or to
solve estimating equations in difficult cases such as estima-
tion with the censored or truncated regression model, the
nonlinear structural measurement error model, and the ran-
dom effects model. The procedure is based on the general
principle of stochastic approximation and the Markov chain
Monte-Carlo method. Applying the theory on adaptive al-
gorithms, we derive conditions under which the proposed
procedure converges. Simulation studies also indicate that
the proposed procedure consistently converges to the max-
imum likelihood estimate for the structural measurement
error logistic regression model.

1. Introduction

Suppose we have a random vector X � E, where E is some
sample space. Further assume that X has a density function
f �x�θ�, which depends on a d-dimensional parameter θ � 2.
Many statistical estimation procedures, such as the maximum
likelihood estimation (MLE), estimating equation, and robust
regression procedures, share the common feature of finding a
θ̂ � 2 such that

H�θ̂;X� = 0; [1]

for a given function H�·; ·� x 2 3 E → Rd . In the case of
MLE, H�x; θ� = ∇θ log f �x�θ�, where ∇θ denotes the gradient
operator with respect to θ. This estimating procedure is widely
used in practice, and its properties have been well studied.

In practice, however, data X may not be completely ob-
servable; instead only a proxy, Y , is observable. For example,
in survival analysis, some data may be subject to right censor-
ing. Other types of incomplete data may not be categorized so
straightforwardly. For example, in error-in-variable and mixed
model problems, the model contains a latent variable that can-
not be observed.

When data are incomplete, the following procedure is usu-
ally employed. Suppose that only the incomplete data Y � E′
is observed. Also suppose that given Y = y, the complete data
X, which cannot be determined in certainty, follows the con-
ditional distribution with density πθ�x�y�, depending on θ. To
estimate the parameter θ, one usually finds θ̂�2 such that

h�θ̂� = h�θ̂; Y � = 0; [2]

where function h is defined by

h�θ; y�=Eθ�H�θ;X��Y = y�=
∫
H�θ; x�πθ�x�y�dx: [3]
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In a recent paper (1) dealing with estimation in a censored
regression model, Lai and Ying called the procedure given by
Eqs. 2 and 3 the missing information principle.

The major obstacle in implementing this procedure is that
the function h given by Eq. 3 usually has no closed analytic ex-
pression, and therefore finding θ̂ in Eq. 2 is difficult. One way
to overcome this obstacle is to use numerical integration in
Eq. 3. In attempting to find the MLE of error-in-variable lo-
gistic regression model, Schafer (2) found that this approach
gives unstable estimates and is usually inferior to other ap-
proaches to the problem.

Another way to overcome this obstacle is to use Monte-
Carlo integration to approximate h�θ� (3, 4). The advantage
of this approach is that the approximation is not affected
by the “curse of dimensionality.” At the same time the
Metropolis–Hastings algorithm (5, 6) can be used to simu-
late data from the conditional distribution πθ�x�y�. In many
cases, the conditional distribution πθ�x�y� admits the form
C�y; θ�g�x�y; θ�, where g has an analytic form but C−1�y; θ� =∫
g�x�y; θ�dy, the normalizing constant, has no closed ana-

lytic expression. The Metropolis–Hastings algorithm is well
suited for such problems. Examples that bear this charac-
teristic can be found in ref. 7, where rank based regression
procedure is proposed for interval censored data, and in
ref. 4, where procedures for deriving MLE in a nonlinear
mixed model are discussed. Another example is MLE with
the error-in-variable logistic regression model as discussed in
detail in Section 4.

The question still remains as to how close one should ap-
proximate the function h�θ�. To derive an accurate value of
θ̂, one needs a large number of simulations, especially when
θ is in the neighborhood of θ̂. Stochastic approximation, first
proposed by Robbins and Monro in ref. 8, provides an answer
to this question. By recent developments on adaptive control
and stochastic approximation (9), the Metropolis–Hastings al-
gorithm can be incorporated into the simulation step to form
a general procedure for this task.

The aim of this paper is to propose a procedure for finding
θ̂ in the general statistical model of Eqs. 1, 2, and 3. We show
that the proposed procedure converges under mild conditions.
We also illustrate our procedure by using the example of MLE
in the error-in-variable logistic regression model. Simulation
results indicate that the proposed procedure works well for
this model.

2. The Proposed Algorithm

To introduce our algorithm, we first introduce the Markov
transition probability 5θ�x;A�. To use the Metropolis–
Hastings algorithm (5, 6) to simulate values from the con-
ditional distribution πθ�x�y�, we can construct a Markov
transition probability 5θ�x;A� such that πθ�x�y� is the
unique invariant distribution on E. In other words, for any
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measurable set A in E,∫
A

πθ�dx�y� =
∫
E

πθ�dx�y�5θ�x;A�:

In the case that πθ�x�y� = C�y; θ�g�x�y; θ�, where g has a
closed analytic expression, ref. 6 suggested the use of

5θ�x; dx′� = q�x; x′�min
{
g�x′�y; θ� q�x′; x�
g�x�y; θ� q�x; x′� ; 1

}
dx′

for x′ 6= x and 5θ�x; �x�� = 1 − ∫
z 6=x 5θ�x; dz�, where

q�x; x′� is any aperiodic recurrent transition density. In our
case, q�x; x′� can be chosen to depend on θ and y.

To apply the stochastic approximation algorithm more
efficiently, we need to approximate the derivative matrix
−�∂/∂θ�h�θ�. In the algorithm proposed below, we assume
that there exists a matrix function I�θ; x� such that

G�θ� A Eθ�I�θ;X��Y = y� [4]

is close to −�∂/∂θ�h�θ� for θ in the neighborhood of θ̂. In Sec-
tion 3, we will discuss how to choose such a function I�θ; x�.

Following the general principle of stochastic approximation,
we choose a positive integer m and a sequence of positive
constants �γk� such that
[C.1]

∑:
k=1 γk = : and

[C.2]
∑:

k=1 γ
2
k + ::

We propose the following algorithm for finding the θ̂ that
satisfies Eq. 2.

A Stochastic Approximation Algorithm for Estimation with
the Markov Chain Monte-Carlo Method.

Step 0. Choose initial values θ0 � 2, 00, and X0;m � E and
set k = 1.

Step 1. For fixed k, set Xk;0 = Xk−1;m. For i = 1; · · · ;m,
simulate Xk;i from the transition probability 5θk−1

�Xk;i−1; ·�.
Step 2. Update the estimate of θ̂ by

0k = 0k−1 + γk�Ī�θk−1;Xk� − 0k−1� and

θk = θk−1 + γk0−1
k H̄�θk−1;Xk�; [5]

where Xk = �Xk;1; · · · ;Xk;m� and

H̄�θ; x� = 1
m
�H�θ; x1� + : : :+H�θ; xk��;

Ī�θ; x� = 1
m
�I�θ; x1� + : : :+ I�θ; xm��: [6]

Set k = k + 1 and go to Step 1 until the sequence �θk� con-
verges.

The choice for the sequence �γk� is usually �1/k�.
The choice of m should not affect the convergence of the

proposed procedure. However, a good choice of m may make
the procedure more stable and save computation time. In gen-
eral, when the dimension of the parameter space 2 is high,
it may be computationally expensive to invert the matrix 0k
in Eq. 5. In this case, one may choose a larger m. A larger
m makes H̄�θk−1;Xk� smoother and closer to h�θk−1� and
Ī�θk−1;Xk� closer to G�θk−1� and therefore shortens the to-
tal number of iterations for �θk� to converge. Our experience
shows that m can be in the range of 10 to 100.

3. Choices of Function I(θ, x)

A good choice of the function I�θ; x� will increase the rate
of convergence of the stochastic approximation algorithm. To
obtain such a choice, we need to generalize the missing infor-
mation theorem of ref. 10. Note that we assume that X comes
from the family �f �x�θ�; θ � 2�.

Lemma 1. Suppose that H�θ; x� is twice differentiable with
respect to θ and that the order of integration and differentiation
can be exchanged. Then for h�θ� defined in 3, we have

− ∂

∂θ
h�θ� = −Eθ

[
∂

∂θ
H�θ;X�∣∣Y = y]

−Covθ

(
H�θ;X�; ∂

∂θ
log fθ�X�

∣∣Y = y): [7]

In the case of MLE, H�θ; x� = �∂/∂θ� log fθ�x�, Lemma 1
reduces to Louis’ missing information theorem (10). Lemma 1
can be proved with the same argument as in ref. 10. See also
ref. 11 (p. 75). The proof is omitted here.

According to ref. 9, a good choice of function I�θ; x� would
be a function such that E�I�θ;X��Y = y� = −�∂/∂θ�h�θ�.
According to Lemma 1, we can choose

I�θ; x�= − ∂

∂θ
H�θ; x�−H�θ;X�

(
∂

∂θ
log fθ�x�

)t
; [8]

where at denotes the transpose of vector a. In this case,

G�θ� = −Eθ

[
∂

∂θ
H�θ;X�∣∣Y = y]

− Eθ

[
H�θ;X�

(
∂

∂θ
log fθ�X�

)t∣∣Y = y]

= − ∂
∂θ
h�θ� − h�θ�Et

θ

[
∂

∂θ
log fθ�X�

∣∣Y = y]:
In the neighborhood of θ̂, defined by Eq. 2, h�θ� is small and
therefore G�θ� is close to −�∂/∂θ�h�θ�. Moreover, at θ = θ̂,
G�θ̂� = −�∂/∂θ�h�θ̂�. In Section 5, we will see that under
general conditions, 0k → G�θ̂� as θk → θ̂. Thus when k is
large, 0k can serve as an estimate of −�∂/∂θ�h�θ̂�. In the
case of H�θ; x� = �∂/∂θ� log fθ�x�, 0−1

k is an estimate of the
covariance matrix of θ̂.

4. Application to the Measurement Error Model

In this section, we apply the stochastic approximation algo-
rithm to find the MLE in the logistic regression model, with
covariates measured with errors. Measurement error problems
often arise in epidemiologic studies when risk factors cannot
be measured accurately. A detailed introduction to this sub-
ject can be found in refs. 12 or 13. Different estimation meth-
ods were proposed for this problem. Schafer (2) was the first
tried to calculate the exact MLE with an approximate EM
algorithm.

Suppose that the true, unobservable covariates Z1; : : : ; Zn
are i.i.d. from a population with a known density function
fZ�z�. The observed data are �Ui;Vi�, i = 1; : : : ; n. Given
that Zi = zi, Ui is binary with Pr�Ui = 0�Zi = zi� =
1− Pr�Ui = 1�Zi = zi�, and

Pr�Ui = 1�Zi = zi� = �1+ exp�α+ βzi��−1; [9]

and Vi is distributed as N�zi; σ2�. The log-likelihood function
for parameter (α, β) is

l�α;β� =
n∑
i=1

∫ [�1−Ui��α+ βzi�
− log�1+ exp�α+ βzi��

]
3 π�zi�Ui; Vi; α; β�dzi; [10]
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where π�z�u; v; α;β� is the conditional density of Zi given
Ui = u, Vi = v and parameter (α, β). In this case,

π�z�u; v; α;β�

= 1
C
fZ�z�φ

(
v− z
σ

)
exp��1−u��α+βz��
�1+ exp�α+βz�� ; [11]

where C is the normalizing constant so that the integral of
π�z�u; v; α;β� with respect to z is 1.

To apply the proposed stochastic approximation algorithm
to find the MLE, �α̂; β̂�, we use the Metropolis–Hastings
algorithm to construct a Markov kernel with its invariant
measure π�z�y; x; α;β� (see the discussion at the begin-
ning of Section 2). One possibility is to take q�z; z∗� to be
fZ�z∗�φ��v − z∗�/σ�/C ′, where C ′ is the normalizing con-
stant so that q�z; z∗� is a density in z∗. With this choice, the
resulting Metropolis algorithm is closely related to the accep-
tance/rejection methods. Hastings (6) called this the method
of independence chain. The resulting transition probability
takes the simple form

5�α;β��z; dz∗�

= fZ�z∗�
C ′

φ

(
v − z∗
σ

)
3 min

{
e�1−u��α+βz∗� �1+ eα+βz�
e�1−u��α+βz� �1+ eα+βz∗ � ; 1

}
dz∗ [12]

for z∗ 6= z and 5�α;β��z; �z�� = 1 − ∫
w 6=z 5�α;β��z; dw�. The

function H is the score function of the complete data.
H�α;β;Z� = ∇L�α;β;Z�, where ∇ denotes the gradient op-
erator and L�α;β;Z� is the log-likelihood function of the
complete data,

L�α;β;Z� =
n∑
j=1

[�1−Uj��α+ βZj�
− log�1+ exp�α+ βZj��

]
:

According to the discussion in Section 3, function I�α;β;Z�
takes the form

−∇2L�α;β;Z� − ∇L�α;β;Z��∇L�α;β;Z��t ;
where ∇2 is the Hessian operator.

We have carried out a simulation study using the proposed
stochastic approximation procedure for the case α = 0, β = 1,
n = 200. The distribution of Z is N�0; 1� and σ2 = 0:10, 0.25,
0.50 and 0.75 respectively. The maximum number of iterations
of the stochastic approximation procedure is set at K = 50 in
each simulation. The number m is set at m = 50. We use
γk = 1/k. The initial values are set at α0 = 0:5, β0 = 0:5, and
00 = 0. The following table gives the mean square errors of α̂
and β̂ and the average of the corresponding diagonal values
of 0−1

K . The result is based on 2000 simulations. The numbers
in Table 1 are multiplied by 1000 for easy presentation.

A common feature of early estimation methods proposed
for the nonlinear error-in-variable models is that they give ac-
curate estimate only when the variance of the measurement
error σ2 is small. When σ2 becomes large, such as 0:75, these

Table 1. 1000 3 mean squared errors (MSE) and the corresponding
average of the diagonal elements of 0−1

K based on 2000 simulations

Average of Average of
σ2 MSE(α̂) 0−1

K �1; 1� MSE(β̂) 0−1
K �2; 2�

0.10 25 25 42 40
0.25 25 25 48 48
0.50 26 26 59 59
0.75 27 26 63 67

methods give unstable results (2). Table 1 suggests that our
procedure give accurate MLEs, whereas the mean square er-
ror grows proportionally with σ2. Note that only in the limiting
case (or when sample size n becomes very large) is the mean
square error of the MLE equal to the inverse of the infor-
mation matrix. So the small discrepancies between the second
and the third columns and the fourth and the last columns are
very reasonable.

In a practical application, the maximum number of itera-
tions, K, may be sequentially determined accoring to the se-
quence �θk; k + K�. For convenience, we have set this num-
ber at 50 in our simulation study. This does not seems cause
any particular problem since at iteration 50, all sequences θk
have already converged in the parameter setting given above.
In fact, we have run the simulations for K = 70;100 (with all
other factors the same as in K = 50), and the results obtained
are practically the same as those given in Table 1.

5. Convergence Theorem

In this section, we formulate a convergence theorem for the
proposed algorithm. Theorem 1 is based on theorem 3.17
(page 304) of ref. 9, which gives the conditions under which
the stochastic approximation algorithm converges for observa-
tions from Markov chains as described in Section 2. We give
conditions that are more transparent and easier to verify. Sup-
pose that 2 is an open set in Rd and E is an open set in Rn.

Conditions on the γ k: Suppose that the sequence �γk;
K � 1� satisfies C.1 and C.2 in Section 2.

Conditions on the Transition Probability 5θ: Let Q be any
compact subset of 2 and let q , 1 be a sufficiently large real
number. The constants C1; : : : ; C4 and λ in the following may
depend on Q and q.

[C.3] Integrability. There exists a C1 such that for any x � E,
θ � 2 and k � 1,∫

�1+ �y�q�5kθ�x; dy� � C1�1+ �x�q�:

In the above and in the following, 5kθ�x; dy� =
∫ · · · ∫ 5θ�x;

dx1�· · ·5θ�xk−2; dxk−1�5θ�xk−1; dy� and �x� denotes the length
of vector x.

[C.4] Convergence of the Markov Chains. Let πθ be the
unique invariant measure associated with 5θ. For every
θ � D,

lim
k→:

sup
x�E

1
1+ �x�q

∫
�1+ �y�q��5kθ�x; dy� − πθ�dy�� = 0:

[C.5] Continuity in θ. There exist constants C2 and C3, such
that for all θ; θ′ � Q∣∣∣∣ ∫ �1+ �y�q��5θ�x; dy�−5θ′ �x; dy��∣∣∣∣ � C2�θ− θ′��1+ �x�q�y∣∣∣∣∫ �1+ �y�q��πθ�dy�−πθ′ �dy��∣∣∣∣ � C3�θ− θ′�:

[C.6] Continuity in x. There exists constant C4, such that for
θ; θ′ � Q and x1; x2 � E

sup
θ�2

∣∣∣∣ ∫ �1+ �y�q+1��5θ�x1; dy� −5θ�x2; dy��
∣∣∣∣

� C4�x1 − x2��1+ �x1�q + �x2�q�:

Conditions on Functions H(θ, x) and I(θ, x):

[C.7] For any compact subset Q of 2, there exist positive con-
stants p, K1, K2, K3 and λ′ , 1/2 such that for all x; x1; x2 �
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E and θ; θ′ � Q,

�H�θ; x�� � K1�1+ �x�p+1�y
�H�θ; x1� −H�θ; x2�� � K2�x1 − x2��1+ �x1�p + �x2�p�y
�H�θ; x� −H�θ′; x�� � K3�θ− θ′�λ

′ �1+ �x�p+1�:
The same inequalities hold for I�θ; x�.

Since Y = y is fixed in this investigation, we can suppress
the variable y in πθ�x�y�. Therefore, we can write h�θ� =∫
H�θ; x�πθ�dx� and G�θ� = ∫

I�θ; x�πθ�dx�. Consider the
solution �θ�t�; 0�t��, t � 0 of the ordinary differentiate equa-
tion (ODE)(

d
dt
θ�t�

d
dt
0�t�

)
=
(
0�t�−1h�θ�t��
G�θ�t�� − 0�t�

)
;

(
θ�0�
0�0�

)
=
( z
0

)
: [13]

A point �z∗; 0∗� is called a stability point if the ODE (13)
admits the only solution θ�t� = z∗, G�θ�t�� = 0∗, t � 0 if
θ�0� = z∗, 0�0� = 0∗. It is easy to see that (θ̂, G�θ̂�) is a
stability point of the ODE (13). A set D is called a domain of
attraction of a stability point �z∗; 0∗� if the solution of Eq. 13
with �θ�0�; 0�0�� � D remains indefinitely in D and converges
to �z∗; 0∗�.

Theorem 1. Assume that the conditions C.1–C.7 are valid. If
��θk; 0k�; k � 1�; defined by Eq. 5, is a bounded sequence and
visits infinitely often a compact subset of the domain of attraction
of the stability point �θ̂;G�θ̂�� of ODE �13� almost surely, then

θk → θ̂ and 0k → G�θ̂� almost surely: [14]

Condition C.3 is a moment condition. Condition C.4 is a
stronger version of the assumption that the Markov chain
driven by the transition probability 5θ�x; dy� converges uni-
formly to the invariant measure πθ. Nevertheless, such a
condition is usually satisfied whenever π�θ� has high mo-
ments. Conditions C.5 and C.6 require the Lipschitz continuity
in terms of θ in 5θ�x; dy� and πθ�x� and in terms of x in
5θ�x; dy�. These conditions are usually satisfied in practice.
C.7 are moment and Lipschitz conditions on the functions
H�θ; x� and I�θ; x�. These should also be satisfied in practice.
In particular, these conditions are satisfied in our example in
Section 4.

We shall prove Theorem 1 in the Appendix.

6. Some Concluding Remarks

We have proposed a stochastic approximation-based proce-
dure for incomplete data estimation. The procedure incorpo-
rates naturally the Markov chain-based simulation procedure
and can be used to resolve a wide class of incomplete data
estimation problems. In addition, the proposed procedure is
successfully applied to find the MLE in the structural mea-
surement error logistic regression model, which, to the extend
of our knowledge, has not been satisfyingly solved before.

The proposed stochastic approximation procedure is not
limited to the estimation problem. For applications in adap-
tive control, our procedure serves as a correction to the of
optimal choice of search direction suggested on p. 115 of
ref. 9. Their suggestion is equivalent, in our notation, to us-
ing I�θ; x� = −�∂/∂θ�H�θ; x�, while in fact, a second term
similar to that in Eq. 8 should be subtracted.

In addition, we have showed that under mild conditions, the
proposed procedure converges. Our convergence theorem is
based on theorem 3.17 (or corollary 3.18), part II, of ref. 9.
Even though our condition is easier to verify than those listed
in ref. 9, no effort is made to improve upon theorem 3.17 of
ref. 9. Our main objective is to show that the idea of stochastic
approximation can successfully be applied to incomplete data
estimation problems.

Appendix: Proofs of Theorem 1

Theorem 1 is based on theorem 3.17 (or corollary 3.18),
part II, of ref. 9 (p. 304). First, we show that the updating
step in Eq. 5 can be written in the form of equation 1.1.1 of
ref. 9 (p. 213 or p. 9). Using 0−1

k −0−1
k−1 = −0−1

k �0k−0k−1�0−1
k−1

and the first expression of Eq. 5, we can write the second
expression of 5 as

θk = θk−1 + γk0−1
k−1H̄�θk−1;Xk� + γ2

kρk�θk−1; 0k−1;Xk�;

where

ρk�θ; 0; x� = −�I−γk0−1�Ī�θ; x� − 0��
3 0−1�Ī�θ; x�−0�0−1H̄�θ; x�: [15]

We see that expression 5 can be written in the form of expres-
sion 1.1.1 of ref. 9 by viewing �θ; 0� as a vector parameter.

We now show that under the assumptions of Theorem 1,
the assumptions of theorem 3.17 of ref. 9 (namely A.1, A.2,
A.3, A.4, A′.5, A′.6, and A.7) are satisfied.

[A.1] (p. 213 of ref. 9). A.1 is satisfied because of C.1.

[A.2] (p. 213 of ref. 9). We note that the random vector Xn

in ref. 9 is �Xk;1; : : : ;Xk;m� (n is k in our case). Thus, con-
dition A.2 is satisfied because of the way �Xk;1; : : : ;Xk;m� is
simulated.

[A.3] (p. 216 of ref. 9). We note that the parameter θ in
ref. 9 is �θ; 0� in our case. The function H�θ; x� in ref. 9
is �0−1H̄�θ; x�; Ī�θ; x� − 0�, where the functions H̄�θ; x� and
Ī�θ; x� are defined in 6. The function ρ�θ; 0; x� is defined by
15. So condition C.7 implies A.3.

[A.4] (p. 216 of ref. 9). To show that this condition holds, we
need Lemma 2 below and theorem 2.5 (p. 259) of ref. 9 The
proof of Lemma 2 involves standard Markov chain arguments
and is similar to the proof of a Harris convergent Markov
chain must be geometrically convergent. See ref. 14. The proof
of Lemma 2 is not provided.

Conditions C.4 and C.5 imply j of Lemma 2, which in turn
implies condition i of theorem 2.5 of ref. 9 with p1 = q − 1,
q1 = q2 = q. Condition C.3 implies condition ii of theorem
2.5 of ref. 9 with m = q. Again by Lemma 2, conditions C.4
and C.5 imply jj of Lemma 2, which implies condition iii of
theorem 2.5 of ref. 9 with m = q. Therefore, the conclusions
of theorem 2.5 of ref. 9 hold with p1 = p2 = q− 1. Thus, A.4
holds with q3 = q4 = q.

[A′.5] (p. 290 of ref. 9). i of A′.5 is guaranteed by j of Lemma
2. i′ of A′.5 is guaranteed by C.3. ii of A′.5 is guaranteed by
C.6. iii of A′.5 is implied by C.5.

[A′.6] (p. 301 of ref. 9). C.2 implies A′.6 with α = 2.

[A.7] (p. 233 of ref. 9). If we let D be the domain of attrac-
tion of �θ̂;G�θ̂��, then A.7 holds on D. See the discussion on
p. 233 of ref. 9.

Lemma 2. Under the Assumptions C.4 and C.5, for any com-
pact set Q � 2 �j� there exists a constant C ′1 and ρ1 + 1 such
that for all k � 1; θ � Q and x � E∫

�1+ �y�q��5kθ�x; dy� − πθ�dy�� � C ′1ρk1 �1+ �x�q�y

�jj� there exists a constant C ′2 and ρ2 + 1; such that for all
k � 1; θ; θ′ � Q and x � E∫
�1+ �y�q��5kθ�x; dy� − πθ�dy� −5kθ′ �x; dy� + πθ′ �dy��

� C ′2ρ
k
2 �θ− θ′��1+ �x�q�:
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